M-Statistic for Kernel Change-Point Detection

نویسندگان

  • Shuang Li
  • Yao Xie
  • Hanjun Dai
  • Le Song
چکیده

Detecting the emergence of an abrupt change-point is a classic problem in statistics and machine learning. Kernel-based nonparametric statistics have been proposed for this task which make fewer assumptions on the distributions than traditional parametric approach. However, none of the existing kernel statistics has provided a computationally efficient way to characterize the extremal behavior of the statistic. Such characterization is crucial for setting the detection threshold, to control the significance level in the offline case as well as the false alarm rate (captured by the average run length) in the online case. In this paper we focus on the scenario when the amount of background data is large, and propose two related computationally efficient kernel-based statistics for change-point detection, which we call “M -statistics”. A novel theoretical result of the paper is the characterization of the tail probability of these statistics using a new technique based on change-of-measure. Such characterization provides us accurate detection thresholds for both offline and online cases in computationally efficient manner, without the need to resort to the more expensive simulations such as bootstrapping. Moreover, our M -statistic can be applied to highdimensional data by choosing a proper kernel. We show that our methods perform well in both synthetic and real world data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Change-point Analysis

We introduce a kernel-based method for change-point analysis within a sequence of temporal observations. Change-point analysis of an unlabelled sample of observations consists in, first, testing whether a change in the distribution occurs within the sample, and second, if a change occurs, estimating the change-point instant after which the distribution of the observations switches from one dist...

متن کامل

Long signal change-point detection

The detection of change-points in a spatially or time ordered data sequence is an important problem in many fields such as genetics and finance. We derive the asymptotic distribution of a statistic recently suggested for detecting change-points. Simulation of its estimated limit distribution leads to a new and computationally efficient change-point detection algorithm, which can be used on very...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

Localized Structural Damage Detection: A Change Point Analysis

Many current damage detection techniques rely on the skill and experience of a trained inspector and also require a priori knowledge about the structure’s properties. However, this study presents adaptation of several change point analysis techniques for their performance in civil engineering damage detection. Literature shows different statistical approaches which are developed for detection o...

متن کامل

Small and Stable Descriptors of Distributions for Geometric Statistical Problems

This thesis explores how to sparsely represent distributions of points for geometric statistical problems. A coreset C is a small summary of a point set P such that if a certain statistic is computed on P and C, then the difference in the results is guaranteed to be bounded by a parameter ε. Two examples of coresets are εsamples and ε-kernels. An ε-sample can estimate the density of a point set...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015